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Enhanced tunneling conductivity induced by gelation of attractive colloids
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We show that the formation of a gel by conducting colloidal particles leads to a dramatic enhancement in bulk
conductivity, due to interparticle electron tunneling, combining predictions from molecular-dynamics simulations
with structural measurements in an experimental colloid system. Our results show how colloidal gelation can be
used as a general route to huge enhancements of conductivity, and suggest a feasible way for developing cheap
materials with novel properties and low metal content.
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I. INTRODUCTION

Attractive forces between colloidal particles, ranging in
size from nanometers to microns, can be finely controlled in
the laboratory through surface functionalization or addition of
depletants, leading to a wide range of phases and dynamical
behaviors [1–5]. In particular, when the interparticle attraction
range λ is much smaller than the particle diameter D, the
dynamical arrest of phase separation leads to the formation of
colloidal gels—arrested, space-spanning structures—even at
low particle volume fractions φ [6,7]. Gels form when particles
are quenched into the liquid-gas phase-separation region of the
phase diagram, and spinodal decomposition arrests [7–9]; they
have been observed experimentally in colloids and proteins
[7,9–13], and in computer simulations [8,14–16]. The structure
of these gels depend on φ, λ, and the strength of the attraction
[10], and can form sparse, ramified semisolid structures.

For dispersions of conducting particles, tuning the inter-
particle attractions can alter the bulk electrical properties
of the system [17,18], for example, enhancing electrical
conductivity in colloidal fluids [19] by lowering the mean
distance required for electrons to tunnel between particles [20].
If this enhanced tunneling were to persist or be amplified
in the deeply quenched region as well, this might provide
a new route to designing materials with novel combinations
of electrical and mechanical properties, such as new highly
conductive semisolid materials which could have important
practical applications in energy storage and transport.

In this article, we explore how the gelation of conduct-
ing colloidal particles affects overall electrical conductivity,
where electron tunneling between particles is the princi-
pal mechanism of electrical conductivity. We find using
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molecular-dynamics computer simulations that the tunneling
conductivity σ in the arrested gel phase depends only weakly
on φ, and remains relatively high even for φ as low as 3%.
In this regime, we also find that σ is only moderately affected
by varying ξ/D by as much as one order of magnitude, where
ξ is the characteristic tunneling decay length. In addition, we
perform the same analysis for gel structures formed in an
experimental colloidal system with short-ranged, attractive de-
pletion interactions; we find a similar shortening of the relevant
tunneling distances as the system evolves towards the arrested
gel state. Our results demonstrate that conduction via tunneling
in gels of conducting colloidal particles can occur using
realistic assumptions of microscopic parameters, opening up
the possibility of creating new, lightweight, highly conductive
materials with novel mechanical and electrical properties.

II. MODEL AND SIMULATIONS

Our simulations comprise a colloidal system of N conduct-
ing monodisperse spherical particles dispersed in a continuous
insulating medium, with volume fraction φ = πρD3/6, where
D is the sphere diameter, ρ = N/L3 is the number density, and
L is the box size. We assume that the conductance between
any two particles i and j is dominated by electron-tunneling
processes, with conductance g(δij ):

g(δij ) = g0 exp

(
− 2δij

ξ

)
, (1)

where δij ≡ rij − D is the closest distance between particle
surfaces, rij is the center-to-center distance between particles,
ξ is the tunneling decay length, and g0 is a prefactor that we
define so that the conductance between two touching colloids
is g(0) ≡ 1. The potential barrier separating conducting
and insulating phases determines ξ , which typically ranges
from a fraction of a nanometer to a few nanometers [21].
Consequently, ξ/D � 0.1 for particles larger than a few tens
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of nanometers, so that, consistent with Eq. (1), charging and
Coulomb interaction effects on electron transfer can be safely
neglected at room temperature.

For colloidal systems with short-ranged attractions, λ/D �
0.05, thermodynamic properties at a given φ depend not
on the specific shape of the potential u(r), but only on
its integral, expressed as a reduced second virial coefficient
B∗

2 = (3/D3)
∫

[1 − e−u(r)/T ]r2dr , where T is the temperature
and kB ≡ 1 [7,22–24]. In particular, short-ranged attractive
colloidal spheres are in an equilibrium fluid phase for B∗

2 �
B∗c

2 , where B∗c
2 � −1.2 is the critical value at the critical

point of the gas-liquid phase separation [25,26]. Because all
short-range potential shapes yield the same thermodynamic
behavior [7,22], we select a square-well (SW) model of the
interaction of the following form:

u(δij ) =

⎧⎪⎨
⎪⎩

∞, δij � 0,

−u0, 0 < δij � λD,

0, δij > λD,

(2)

where λ � 1 and u0 > 0 are, respectively, the dimensionless
potential range and depth. As in Eq. (1), δij denotes the closest
distance between surfaces of particle pairs. The scaled virial
coefficient of the potential in Eq. (2) can be expressed as
B∗

2 ≡ 1 − 1/4τ , where τ−1 ≡ 4[(1 + λ)3 − 1][exp(u0/T ) −
1] is the Baxter stickiness parameter [27]. Consequently, a
homogeneous SW fluid exists when τ is greater than the critical
value τc ∼ 0.11 [25,26].

In this regime, SW fluids of conducting particles display
enhanced conductivity σ , relative to the hard-sphere case,
as τ is decreased [20]. The interparticle attraction enhances
conductivity by drawing the particles closer together: the
population of particles with separations lower than λD

increases, thereby promoting short-length tunneling processes,
which result in larger g(δij ). Specifically, in attractive colloidal
fluids where λ → 0, τ = 0.2, and ξ/D = 0.01, σ is relatively
large and depends only weakly on φ for φ � 0.2 [20].

When B∗
2 � B∗c

2 (i.e., τ � τc), short-ranged attractive
colloids undergo phase separation and can arrest to form gels:
spanning structures that may sustain shear stresses even at
low φ [7,8,15,16]. In these gel configurations, larger tunneling
conductivities might be expected relative to the fluid phase
at the same φ, as the mean separation between the particles
forming the gel network falls below λD; however, knowledge
of potential range alone is insufficient to predict the conduc-
tivity level of the system, as previously shown for SW fluids
of conducting colloids [20]. Instead, the full interplay between
tunneling, attraction, and structure must be considered.

III. MOLECULAR-DYNAMICS SIMULATIONS

We generate colloidal gel structures from molecular-
dynamics (MD) simulations of N = 104 attractive colloids
of mass m, square-well depth u0 = 1, and λ = 0.03, corre-
sponding to a critical temperature Tc � 0.3. We implement
Newtonian dynamics via a standard event-driven algorithm
[15,28]. At t = 0 we equilibrate initial configurations at
T = 100 	 Tc, where these systems behave as hard-sphere
(HS) fluids: B∗

2 ∼ 1. For each selected φ value we consider 30
independent realizations. We define two particles as bonded
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FIG. 1. (Color online) (a) Phase diagram for the λ = 0.03 SW
system. The binodal and the critical point are represented by open and
closed squares, respectively. The gel points, obtained by quenching
to state points at low temperature Tq , are represented by circles.
(b) Average number of bonds nb for different φ as a function of t ,
expressed in units of D

√
m/u0. Three different stages of aggregation

for φ = 0.031 25 are shown for (c) t = 0.01, (d) t = 2.3 × 103,
and (e) t = 6.9 × 104. The configuration shown in (e) represents
an arrested colloidal gel, where the particle positions do not display
any subsequent time evolution.

when δij � λD, so that the average number of bonds per
particle is nb = −2U/(Nu0), where U/N is the potential
energy per particle. For t > 0, we quench the system to
Tq = 0.05 � Tc, corresponding to τ � 5.56 × 10−9 and B∗

2 �
−4.5 × 107; we select five different packing fractions, ranging
from φ � 0.03 to φ � 0.3, marked with circles in Fig. 1(a).
These configurations fall well within the two-phase region of
the phase diagram; the full gas-liquid coexistence line at this
attraction range [25,26,29] is marked with squares in the figure.

At short times, the samples appear homogeneously dis-
persed, as illustrated by a sample with φ = 0.03125 in
Fig. 1(c); this fluidlike initial state, where nb remains at a
constant low level, persists longer for lower φ, as shown in
Fig. 1(b). Following this initial transient state, concentration
fluctuations arising from spinodal decomposition grow rapidly,
marked by a steep rise in nb, as illustrated in Fig. 1(d).
Eventually, when the particles become so dense locally as
to potentially undergo an attractive glass transition [7], the
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structures arrest to form gels, as illustrated in Fig. 1(e), and nb

plateaus at about 6; no further evolution is observed.

IV. CRITICAL PATH APPROXIMATION

To explore the effect of gelation on the system conductivity
σ we first apply the critical path approximation (CPA) to the
network formed by the tunneling conductances of Eq. (1) [30].
When the δij distances are widely distributed on a length scale
of the order of ξ , the CPA provides a robust estimate of the
network conductivity through

σcpa = σ0 exp

(
− 2δc

ξ

)
, (3)

where σ0 is a constant prefactor and δc is the shortest δij such
that the subnetwork defined by the bonds satisfying δij � δc

forms a percolating cluster [20,31]. Equation (3) thus replaces
the problem of solving the tunneling network equations by a
simpler one: finding the critical distance δc so that percolation
is established. Depending on the particle concentration and the
potential depth, δc may be larger or lower than the attraction
range λD [20].

To calculate δc, we coat each conducting sphere with
a concentric penetrable shell of thickness δ0/2, for each
configuration of the system at a given volume fraction φ and

time t ; we consider two spheres as connected if their penetrable
shells overlap (i.e., if δij � δ0). Using a clustering algorithm
[32], we compute the minimum value δ of δ0 such that a cluster
of connected particles connects two opposite faces of the
simulation box. We repeat this procedure along all three axes of
the cubic box, so that a total of 90 values of δ are calculated for
each φ and t . By counting the number of instances for which
sample-spanning clusters appear for a given δ, we construct
the percolation probability P (δ), shown in Figs. 2(a)–2(c) for
systems with φ = 0.03125, 0.125, and 0.3125, respectively. In
each panel of Figs. 2(a)–2(c) we plot P (δ) for several values
of t , expressed in units of D

√
m/u0, ranging from the onset

of the quench at t = 0.013 to the longest time t = 6.86 × 104,
when the gel phase is fully formed for all φ.

Gelation considerably lowers the values of δ for which P (δ)
increases from 0 to 1, as shown in Fig. 2(a), indicating that gel
networks percolate at smaller distances than that of the fluid
state at the same φ. In addition, we observe a sudden change
in the slope of P (δ) when δ/D crosses λ, marked with vertical
dashed lines, due to the discontinuity of the SW potential,
as seen for φ = 0.3125 and 0.03125 and already observed in
SW fluids [20]. Furthermore, for φ = 0.03125 the percolation
transition is not monotonic and, at large times, P (δ) reaches
the unity only for very large δ; in these cases, the finite size of
the system prevents some realizations of the gel network with
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FIG. 2. (Color online) Time evolution of percolation probability P (δ) for the connectivity distance δ/D for (a) φ = 0.03125, (b) φ = 0.125,
and (c) φ = 0.3125. The vertical dashed line in (a)–(c) indicates δ/D = λ = 0.03. For each φ, each curve represents P (δ) calculated at a
specific time ranging from t = 0.013 to t = 6.86 × 104, illustrated with the color (gray) bar at right. (d)–(f) Conductivity probability P (σ ) as
function of − ξ

2D
ln(σ ) for tunneling decay length fixed at ξ/D = 0.1.
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FIG. 3. (Color online) (a) Time evolution of the critical connect-
edness distance δc for gels simulated at different φ, with t in units
of D

√
m/u0. (b) Time evolution (in seconds) of the critical distance

extracted from the measured spatial positions of PMMA particles in
a polymer-colloid system [7]. For times larger than about 104 s the
system is in an arrested gel state.

φ = 0.03125 from connecting two opposite faces of the box.
We minimize finite-size effects by choosing suitable criteria
for extracting δc from P (δ); using the criterion P (δc) = 1/2
to define the critical distance, we find estimates of δc from
N = 104 particles to differ from the N → ∞ limit by only a
few percent, as shown in the Appendix.

To understand the dynamics of these systems, we
investigate the time evolution of δc for all φ. At short times,
particles are dispersed nearly homogeneously, so that δij , and
thus δc, decrease strongly as φ increases, as shown in Fig. 3(a)
and in agreement with previous results on SW equilibrium
fluids [20]. However, when the system is arrested at long
times, the vast majority of particles forming the spanning gel
structure have separations lower than λD, consistent with the
data shown in Fig. 1(b), where the number of bonds stabilizes
at nb ≈ 6 for large t . Consequently, δc becomes small, about
0.01D, and independent of φ, as shown in Fig. 3(a). Strikingly,
though the final value of δc is the same for all φ, we observe
significant φ-dependent differences in reaching this state: for
the three largest concentrations, δc monotonically approaches
the arrested state value, as shown by dashed lines in Fig. 3(a);
by contrast, for φ = 0.0613 and 0.03125, δc exhibits a
pronounced maximum at intermediate times, followed by
a sudden drop towards the arrested state, shown with solid
lines in the figure, which may reflect the formation and
subsequent disappearance of a fluid of particle clusters [10].
In this intermediate regime, where the particles are largely
aggregated into nearly close-packed clusters, illustrated in
Fig. 1(d), the mean distance between clusters is larger at lower
φ. Therefore, percolation occurs only for higher δc, as shown in
Fig. 3(a).

To assess the applicability of these simulation predictions
to physical systems, we repeat analysis on gels formed
in an experimental attractive colloid system [7]. We use
sterically stabilized polymethylmethacrylate (PMMA) spheres
in a solvent mixture of decahydronaphtalene and bromo-
cyclohexane [10], with D � 1120 nm and φ = 0.045, and
introduce a nonadsorbing linear polymer, polystyrene with
molecular weight MW = 695 000, that forms random coils in
solution with radius Rp = 33 nm, so that λ = 0.06 [7]. We
select a sample with polymer concentration cp = 3.31 mg/ml,
which phase separates and arrests to form a gel [7]. Using
confocal microscopy [33], we locate each particle individually
[7,10,33], thereby allowing the same analysis as performed
on the MD simulation configurations. We observe that the
evolution of experimental δc is in qualitative agreement with
the MD simulations at similar φ, as shown in Fig. 3(b).
Although the initial low-time plateau cannot be sampled prac-
tically in these experiments, a maximum of δc is discernible
at t ≈ 300 s, followed by a rapid drop of δc at longer times.
For t � 104 s, the system reaches the arrested gel state, and
δc/D ≈ 0.1, independent of time. This transition associated
with the formation of an arrested gel, consistent with behavior
observed in simulations, is illustrated by the renderings of the
measured particle positions in Fig. 3(b).

We combine the time evolution predictions for δc, as shown
in Fig. 3(a), with Eq. (3), to yield an estimate for the time
evolution of σcpa, and observe that a broad distribution of
φ-dependent σcpa conductivities, spanning about ten orders
of magnitude, drastically narrows in the arrested gel state,
where σcpa remains at a constant high value for all φ [34], as
shown for ξ = 0.1D with solid lines in Fig. 4. Interestingly,
for the two lowest φ values, the maximum of δc due to the
transitory fluid of clusters is reflected by a huge minimum of
σcpa; fluids of clusters of conducting particles appear to be
substantially worse conductors than a homogeneous fluid of
the same composition.

V. NUMERICAL CALCULATION OF THE
NETWORK CONDUCTIVITY

To test the accuracy of the results obtained using the CPA,
shown in Fig. 4, we solve numerically the tunneling resistor

FIG. 4. (Color online) Time evolution of conductivity σ for
ξ/D = 0.1 during the formation of the colloidal gel. Numerical
solution of the tunneling resistor equations shown with symbols;
σCPA obtained from Eq. (3) using σ0 = 0.1, with solid lines.
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FIG. 5. (Color online) Conductivity σ as a function of φ for
the arrested gel state (filled circles), equilibrium SW fluids (filled
diamonds), and equilibrium HS fluids (squares). In all cases, ξ/D =
0.01. Inset: φ dependence of σ for the arrested gel state calculated
for different values of ξ/D.

network equations: for each simulation-generated configura-
tion, we assign the interparticle conductances from Eq. (1) to
each pair of particles, thereby generating a fully connected
network. To reduce the number of tunneling connections,
we introduce a maximum tunneling distance δmax so that the
conductances between particles at mutual distances δij > δmax

are neglected; this does not affect overall conductivity [35].
For all realizations, we calculate the conductance G of
the reduced network by combining numerical decimation
with a preconditioned conjugate gradient method [20]. From
the dimensionless conductivity σ = GD/L, where L is the
simulation box edge, we construct the conductivity probability
P (σ ) obtained from all configurations with fixed φ and t ,
as shown for tunneling decay length fixed at ξ/D = 0.1 in
Figs. 2(d)–2(f).

In general, we find qualitative correspondence between
P (σ ) and P (δ), which can be seen by comparing Figs. 2(a)–
2(c) with Figs. 2(d)–2(f). P (σ ) and P (δ) agree even quanti-
tatively for the φ = 0.031 25, and for t when the structure is
not yet arrested; in this regime δ � ξ , and the CPA provides a
good approximation of σ . These data confirm the validity of
using P (σ ) = 1/2 to define the network conductivity σ , which
we find valid also when δ � ξ , as shown in the Appendix.
Beginning from the liquidlike states through the onset of
gelation, the σ values obtained through this network approach
closely follow the corresponding σcpa values, as shown in Fig. 4
with symbols and lines, respectively. Slight discrepancies in
the φ dispersion of arrested states likely arise from the short-
and moderately dispersed distances between the neighboring
particles of the spanning gel structure, which make Eq. (3) less
accurate, as previously discussed.

The significantly higher σ in the long-time arrested gel state
relative to the initial fluidlike state, most pronounced for low
φ and highlighted in Fig. 4, suggests the general possibility
that arrested gel structures could have higher σ relative to
other structures formed from tunneling particles in colloidal
suspensions at the same φ. To test this possibility, we use
Monte Carlo simulations to generate equilibrium fluids of
both HS and SW particles at various φ, with λ = 0.03 and
τ = 0.2 > τc. For each φ, we obtain 300 independent equilib-
rium configurations of systems with N = 2000 particles; we
determine σ for ξ/D = 0.01 and compare with the long time
σ of the arrested gel state as a function of φ. In all cases, at any
given φ, the gel state has a higher σ than that of the SW fluid,
which in turn is always higher than that of the hard-sphere
fluid, as shown in Fig. 5 with circles, diamonds, and squares,
respectively. The σ values for gel and SW fluid converge for
high φ 	 0.3; by contrast, for φ � 0.2, σ of the arrested state
is many orders of magnitude higher than that of either fluid.
Interestingly, while σ depends heavily on φ in both fluid cases,
it is relatively constant in the gel case, even for φ � 0.03, as
shown in Fig. 5.
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Finally, to explore how the conductivity varies with tunnel-
ing decay length, we calculate σ of arrested gels with different
φ and ξ/D. We observe that σ only weakly depends on ξ/D

in the gel state, due to short interparticle distances within the
gel, as shown in the inset to Fig. 5. Indeed, the relevant length
scale is δc/D; in the arrested state we find δc � 0.01D and
tunneling is thus generally unaffected so long as 2δc/ξ � 1,
that is, as long as ξ/D � 0.02. At much lower values, ξ/D

suppresses interparticle tunneling, so that σ is small even in
the arrested gel state.

VI. DISCUSSION AND CONCLUSIONS

Our data and analyses suggest that, in the arrested regime—
where the colloidal conducting particles form system-spanning
amorphous gel structures—the conductivity can be large and
only weakly depends on φ. These results may impact real-
world colloidal systems, where the solid properties of colloidal
gels can be combined with high electrical conductivities
to develop materials with novel mechanical and electrical
properties. In contrast to other systems where conducting
particles are embedded in preexisting gel networks [36], in
our conducting colloidal gels the conducting particles create
simultaneously both the gel network and the conducting path.
This synergy can be exploited, at least in principle, to control
the conductivity directly through the attraction between the
particles, or to change the gel structure by local heating of the
tunneling-gel network.

Our simulation results demonstrate that conduction by
tunneling can be strongly enhanced by the formation of
arrested colloidal gel structures; however, the precise exper-
imental conditions under which systems of real conducting
colloidal systems show similar performance is not yet known.
In general, polymers mediating depletion attractions have
gyration radii larger than about 1–5 nm [37]; therefore,
requiring ξ/D to be no more than a few percent requires
D � 50 nm. Encouragingly, with particles of this size and
typical tunneling decay lengths of a few nm, conductivities
like those in Fig. 5 may yet be achievable in the laboratory.
Nevertheless, conducting particles in this size range remain
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FIG. 7. (Color online) Finite-size scaling analysis of the δc(N )
values extracted from P (δc(N )) = 1/2 of Fig. 3. Solid lines are fits
to Eq. (A1).

TABLE I. Finite-size scaling results for δc at N → ∞ extracted
from the fits shown in Fig. 7 and the corresponding values obtained
by using P (δc) = 1/2 for N = 104.

Time δc(N → ∞) δc(N = 104)

t1 = 0.01 0.3709 ± 0.0007 0.3711
t2 = 39.9 0.2235 ± 0.0076 0.2270
t3 = 53.1 0.100 ± 0.006 0.1062
t4 = 70.7 0.0264 ± 0.0003 0.0265
t5 = 475.7 0.0106 ± 0.0001 0.0108

a significant synthetic challenge, and suspensions of larger
metallic particles show significant sedimentation that may
compromise the formation of gels. Potential solutions to
this problem include using metal-coated PMMA particles,
low-structured carbon black particles, conducting polymer
particles, or synthesizing gels in a microgravity environment,
such as that provided by the International Space Station.
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APPENDIX: FINITE-SIZE ANALYSIS OF δc AND σ

We present finite-size scaling analyses of the percolation
probability P (δ) and of the conductivity probability P (σ ),
demonstrating the validity of the criteria P (δc) = 1/2 and
P (σ ) = 1/2 to define the critical distance δc and the network
conductivity σ .

1. Critical distance δc

To demonstrate the finite-size method to determine δc

we construct the percolation probability P (δ), as described
in Sec. IV, for particle volume fraction fixed at φ = 0.125
and for different times t and particle number N , as shown

TABLE II. Finite-size scaling results for σ at N → ∞, extracted
from the fixed points of P (σ ) of Fig. 5 and the corresponding values
obtained by using P (σ ) = 1/2 for N = 104.

Time − ξ

2D
ln σ (N → ∞) − ξ

2D
ln σ (N = 104)

t1 = 0.01 0.4991 ± 0.0006 0.4933
t2 = 39.9 0.3957 ± 0.0014 0.3809
t3 = 53.1 0.3485 ± 0.0021 0.3314
t4 = 70.7 0.2957 ± 0.0017 0.2854
t5 = 475.7 0.1508 ± 0.0003 0.1503
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FIG. 8. (Color online) (a) Conductivity probability P (σ ) as a function of − ξ

2D
ln(σ ) at φ = 0.125 for different values of t (in units of

D
√

m/u0) and particle numbers N . The tunneling decay length is ξ = 0.1D. (b) Fits to the results of (a) using a combination of two error
functions.

in Fig. 6(a), with corresponding fits to P (δ) obtained from
linear combinations of two error functions in Fig. 6(b). For
the cases with N > 5000, the fixed point of the percolation
probability—the point at which the P (δ) curves for different
N intersect each other—is located approximately at P = 1/2,
which we use to define critical distance δc. To test how this
might change with system size, we apply to each P (δ) the
finite-size scaling relation:

δc − δc(N ) ∝ N−1/3ν, (A1)

where ν � 0.88 is the correlation length exponent and δc(N )
is the value of the critical distance extracted from the fitted
curves at exactly P (δc(N )) = 1/2. From the evolution of δc(N )
as a function of N−1/3ν , we extract δc for N → ∞ from the
intercept at N−1/3ν = 0, shown in Fig. 7. By comparing these
δc values with those extracted from the condition P = 1/2
applied to the N = 104 cases, we find that, at worst, δc(N =
104) is only 6% lower than its asymptotic estimate at N → ∞,
as seen in Table I.

2. Conductivity

To demonstrate that P (σ ) = 1/2 is a valid criterion to
extract the network conductivity σ , we calculate P (σ ) for
ξ/D = 0.1, φ = 0.125, and various N and t values, shown in
Fig. 8. We find that the curves of P (σ ) do not follow the
behavior of the corresponding curves of P (δ), as seen by
comparing Fig. 8 with Fig. 6, where P (δ) is plotted for the
same N and t values. In particular, P (σ ) is not affected by the
discontinuity of the SW potential, in contrast to the behavior of
P (δ) when δ/D = λ. Furthermore, the fixed points detected at
the crossing of the P (σ ) as N varies are no longer associated
to P = 1/2 for N large. However, since the locations of the
fixed points of P (σ ) are much more precise than those for
P (δ), they can be used to extract the network conductivity
σ (N → ∞) with great accuracy. We compare the so-obtained
σ (N → ∞) values with those obtained from the condition
P = 1/2 applied to systems with a number of particles fixed
at N = 104 in Table II; we see that the P = 1/2 criterion
applied to the cases with N = 104 determines σ within ∼ 5%
of the network conductivity for N → ∞.
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