Soft-matter and Colloid Physics

Physics of Attractive Colloids

Colloids are microscopic particles so small that they move diffusively when dispersed in a fluid, exhibiting Brownian motion, controlled by the temperature of the system, like atoms. However, unlike atoms, colloids are big enough to see with light, so they can be probed with microscopes and laser light scattering. The interactions between atoms are fixed, dictated by quantum mechanics, but those in colloids can be very finely tuned.

Drying of Complex Suspensions

Mixtures of immiscible fluids with colloids can be very complex but they are technologically important for industries such as paints and protective coatings, especially when such materials undergo drying. Emulsions containing colloidal particles are particularly interesting as controllable test cases of such systems, but they are difficult to image because these mixtures typically scatter light strongly. Lei Xu, Alexis Bergès, myself and others describe a full 3D picture of what happens when these emulsions dry out.

Colloidal phase transitions on the Int'l Space Station with GPGPU

Under normal conditions on earth, the separation between liquids and gases is usually a bit mundane: the level of water in a drinking glass simply falls as the liquid evaporates into a gas, since the liquid is denser. Two liquids of different densities, such as the oil and vinegar of salad dressing, are similarly unexciting; the oil just floats to the top after a period of time. However, when the effects of gravity are taken away, such as in the environment of the International Space Station (ISS), this separation creates far more interesting and complex patterns.

Peter J. Lu  |  Harvard University  |  Cambridge, MA 02138 USA |